IGNITION OF A REACTING GAS WITH A
HEATED SURFACE, IN THE PRESENCE
OF CONCENTRATION DIFFUSION

A. M. Grishin UDC 536,46

The Blasius perturbation method [1] is used to study the effect of reagent burnout and dif-
fusion on ignition characteristics.

Let us examine the ignition of a reacting gas by a heated noncatalytic surface which is suddenly
brought into contact with the reacting gas filling a space to the right of the surface. The surface tempera-
ture T, remains constant throughout the entire ignition process, and the initial reagent temperature T < T.
Assuming that the thermophysical coefficients of the gas are constant and that we have a reaction of the k-th
order, we determine the heating time and the quantity of heat transmitted to the gas by the heated surface
during the heating time. Mathematically, the problem reduces to the solution of a system of heat-conduc-
tion and diffusion equations [2, 3], which may be expressed in dimensionless form:

00 0% 0

— = +ckex , 1

dt 02 P 14 p6 m
dc d%c %
— = — yc¢* ex - 2
mw ee P T pe @

with the following boundary and initial conditions:
oc

=0,c(w0,7)=c(, 0) =1 3)

8(0, 7) =0, 8(o, 1) =0(x, 0) = —0, —
. E=0

0t

If the coefficient of thermal conductivity A = A,T/T,, and the density p = p,T,/T, by transformation
of the dimensional space coordinate

r

=\ 2 dr, 4)

Po
0

analogous to the transformation from [4], we can make provision for the relationship between the thermo-

physical coefficients and the temperature, provided that we are dealing with a first-order reaction. In this
case, the form of the heat-conduction and diffusion equations, considering the chemical kinetics, does not
change in the dimensionless form, provided — as in [5] — that we assume that p = p(T) and A = A(T) corre-

spond to the temperature distribution T(r, t;) at some instant of time t =¢,.

We introduce the new independent variables

. x §
& = 41, =— = 5
y 2) i 9T )
The system of equations (1) and (2) then assumes the form
00 a0 %0
4e — — 2y — = + ectex , (6)
e Ty o P 110
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oc dc %
de — — o — = — yec® exp -
% Vom  on 1+ po

To solve the system of equations (6) and (7), we use the Blasius perttirbation method [1], assuming that

2]

=" &0, 8)
n=0
_ N et 9)

Here the subscript n denotes the order of the perturbations. Substituting (8) and (9) into (1) and (2), and
collecting terms for identical powers of £, we find an infinite system of linear boundary-value problems
for second-order ordinary differential equations:

d*, dE)
=10, 8,(0)=0, 8(c0)=—0g; 10
T » (0) (00) = — O (10)
d?c, dey de, | 11
2 =0, =0, g(w)=1; (11)
dn? +2n dn dn o 0 ()
2
POy 1oy Mo sng, = — ., 8,(0) =8, (w) = O; (12)
dy*
dic dc de, |
no49 n =YY, n =0, ¢,(0)=0. (13)
dn? o dn dn fr—o (

Here ¥y.4 is the corresponding coefficient in the expansion of the function ¢ = K exp(6/1 + @) in powers of
e. Having solved the boundary-value problems (10) and (11), we find

Yy
= =0 D), Pl = jexp(—z)dz =1 (14

The general solution for (12) without the right~hand member has the form
dzn

d y2n

B0 = A, + Bhi*0* (), 9. =2T"exp(— ) exp 4*. (15)

The function i**®*(y) has been tabulated in [6], and the function @, can be expressed in terms of the
Hermite polynomials [7] of even index and imaginary argument, i.e.,

On = 27",y (jy), (16)
where j is an imaginary unit.
Knowing the general solution for the uniform equation, we can use the method of variation for arbitrary

constants [8] to find the particular solution, corresponding to ¥j,_;, and summing (15) and this particular
solution, we obtain the general solution for the nonuniform equation:

0, = Au@n (4) -+ BL20* (1) + 277 g ﬁllﬂn-i @) [0, () 2"D* (4) — @, (y) D™ (2)] exp Zdz. (17)

In analogous fashion, we find

M
= Catp (1) + Dy @* (1) — 27 1 7Y [0, (©) [0 () 2707 (1) — @, (1) 2707 ()] exp . (18
0

Substituting (17) and (18) into boundary conditions (12) and (13), we obtain

0) A
A, =227V o\ p,,_ (2) 27D (2) exp 22z, Bn:"idm_n_,
V= HJ Nt (2) exp s -
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Co=—2 ) @y |, QP0% Qexpiids, C=2y'L (20)
4]

We are thus able to find a solution for an infinite system of linear equations (10)-(13) in closed form
and, consequently, we can find a solution for the boundary-value problem (1)-(3) in the form of series (8)
and (9) in powers of €.

There arises the question as to the convergence of the series (8) and (9). If ¥ is a known function of
the argument y, we find the exact solution, since series (8) and (9) terminate. In the general case, when
P = ck exp(0/1 + Bo), the convergence of series (8) and (9) could not be proved; however, as will be dem-
onstrated below, the characteristics of the ignition of the reagent by a heated surface for a reaction of
zeroth order (v = 0) is in good agreement with the results of the numerical calculation [9].

Bringing (8) to a form that will satisfy the Zel'dovich condition [10], i.e.,

00 |

=0, 21
m (21)

y=0

we find the equation for the determination of the heating time, namely,

20u _ WY 270%(0) g, (0)
# N OO0 4 22)
= 24 2% (0) a (

n=1

Accurate to perturbations of third and higher orders, Eq. (22) will be quadratic'and, solving this equation,
for g =0 we find the heating time in the form

I S 16, w0u(l,+ 1)
T YR+ ) (l/‘+ e “)' )

Knowing the heating time, we can easily find the quantity of heat transmitted by the plate:

Q.= __S‘ 9% dt =29 T [6 4 = 8]11 256 ]/n Iy + 1) 1:*], (24)
ax x=0
o
where
L=y w | expl8y(y) + 120 (4) dy; (25)
o

L=Va | 0,(5) 0 (y) exp [s* +.8 ()] dy; 26)

0
Iy=ky w | ¢ () D" () exp b -+ 0, 1 . &)

0

The basic contribution to the numerical value of the integrals I, — I5 is given by the values of the integrands
in the vicinity of zero. In this connection, assuming exp 6,(y) = exp(—ZQHy/\fvr), which is valid in the vicinity
of y = 0, for the calculation of the integrals we employ the Laplace method [11]. As a result we find that

2 3n 15m%
Ii=—(1—- — , (28)
' 80y ( on | 20h 46 )
3/
= I = (T3] (29)
5120y (8 4 36u)* 304 0\ 2 9
ST I 3/2
L= — kyy Lx [1_ 2V'L + 31% . 15::[;’ ] (30)
25605 (1.12848y -+ 3.0091) Oy 205 40

Simultaneously with Sidonskii, these same integrals were calculated on an electronic digital computer, Com-~
parison of the data from the numerical calculation and the values of I; — I,, found analytically, showed that
they are in good agreement with each other. In particular, when 6 =5, 10, 20, 40 we have I;§ /I1 =1.078,
1.011, 1.003, 1,000, where I,;g denotes the values of I; obtained by Sidonskii.
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Using the fact that gy > 1, we find the heating time for the ignition of a reagent with a heated plate
in the absence of complete reagent burnout (y = 0)

By 2
T = (‘/3—;1)9.*%_ (1 + 2.8201) ~ 0.2330%, (1 + 2.826:7"). 31)

The quantity of heat transmitted by the plate is equal to
Q, = 0.38362 (1 + L.4legh). (32)

If we limit ourselves exclusively to the first two terms in series (8), we find that

O 83
T, = ~—, Gg>>1, (33)
2 3r by
afl——+ 5
O 261

which corresponds to the Enig results [12].

The asymptotic formulas (31) and (32) agree with the results found with the stress method [5] and
the results of the direct numerical calculation [9]. Table 1 gives the values of 7, from (31) and the values
of 74 found by Sidonskii on a digital computer according to (23), in addition to the values of 7,, obtained by
direct numerical calculation [9].

On the basis of these data we can thus contend that the first three terms in series (8) provide a good
approximation of the true sclution for the boundary-value problem (1)-(3) when 0 = 7 < 7y This is explained
by the fact that the second and third terms in series (8) (perturbations of the first and second order) are
small in absolute value in comparison with the first term when 0 = 1 < 7, i.e., the perturbation of the tem-
perature profile as a consequence of the heat of reaction all the way to the instant of time 7 = 7, is not great.
This remark makes valid the designation of this method as the perturbation method.

If v6y < 1, and gy > 1, which according to [9] is valid for nondegenerate ignition regimes, the heat-
ing time and the quantity of heat transmitted by the surface will be found from (29) and (30) in the form

w4 Ty 1506~V 34
Q=1+, Teyo, [1+E<2.67—;'z>]}ﬁ 3

It follows from these formulas that the quantities 7, and Q, increase as the order of the k-th reaction in-
creases and with an increase in the quantities vy and L. It follows from the last that if the coefficient

of thermal diffusivity » is greater than the diffusion coefficient D, i.e., if L > 1, to ignite a reacting gas we
need a longer heating time than in the case in which L < 1,

The numerical analysis of (22) and (23) confirms these qualitative conclusions. Table 2 gives the
values of 7, and Q, for various values of L. and B, k=1, and y =0.01. ¥ follows from these data that 7,
and Q, increase weakly with an increase in L and increase very much more rapidly as gy increases.

We note that the values of 7, and Q,, calculated with the aid of the asymptotic values of I, I, and I,
virtually do not differ from the corresponding values of 7, and Q,, derived by Sidonskii from (23) and (24)
with the computer.

In conclusion, we note the Blasius perturbation method [1] enables us to solve the problem of igniting
a reacting cylinder at the forward critical point with a stream of heated gas [13], and this method is ap-
parently applicable to the solution of problems involving gas-phase and heterogeneous ignition models.

TABLE 1. Dimensionless Heating Time as a Function of the Dimen-
sionless Temperature Head gy when y =0

| -

|
20 ‘ % % 30 ’ 35 1 40 5 100

I
Ty 9,1 ! 11 29,87 1 62,201 106,34 | 162,05 | 229,41 | 308,43 i 399,08 2337
7 8,69j29,31 61,71 | 105,76 | 161,49 | 228,87 | 307,80 | 398,59 2395
10’ IB 160 100 | 150 | 210 - | - —
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TABLE 2. Dimensionless Heating Time and Dimensionless Quantity
of Heat Transmitted to the Gas by the Heated Surface as Functions
of fy and L

L

o o2 | o4 06| o8 | 1o | w2 | 14 | ous 1,8

Dimensionless heating time

5 8,66] 8,68 8,69 8,70 8,71 8,71 8,72 8,72 8,72
10 29,64] 29,76| 29,86/ 29,92 29,98 30,03 30,07 30,11 30,15
15 62,72 63,11} 63,40 63,64 63,84 64,02 64,18 64,33 64,46
20 108,05/108,96/109,65/ 110,22 | 110,72 | 111,17 | 111,58 | 111,95 | 112,30

Dimensionless quantity of heat

5 17,23; 17,24] 17,24 17,25 17,25 17,26 17,26 17,26 17,27
10 64,04| 64,13 64,20 64,25 64,29 64,33 64,36 64,40 64,42
15 139,98/140,201140,51| 140,70 | 140,85 | 140,99 | 141,11 141,23 | 141,33
20 245,10|245,86/246,41| 246,86 | 247,25 | 247,59 | 247,91 | 248,20 | 248,46

NOTATION
9 = (T — T)E/RT} is the dimensionless temperature;
g =RT,/E is a dimensionless parameter;
y = ¢ pRTZ/qE is a dimensionless parameter;

x=rv (koE/ART%)exp(—E/RTO) is the dimensionless coordinate;

r

is a dimensional coordinate;

£ =xL is a dimensionless coordinate;
L = X/D;

X
A
D

W N

10.
11.
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is the coefficient of thermal diffusivity;
is the coefficient of thermal conductivity;
is the diffusion coefficient;

is the preexponent;

is the heat capacity;

is the density;

is the universal gas constant;

is the activation energy;

is the relative reagent concentration;

= (qk¢Et/cppRT)exp(~E/RTy)  is the dimensionless time;

is the time;

is the absolute temperature;

is the absolute temperature of the heated surface;

is the initial temperature of the reacting gas;

is the thermal effect of the reaction;

is the coefficient of thermal conductivity when T = T;
is the density of the gas when T =T,
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